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Abstract— Compressed Sparse Code Hierarchical Self-
Organizing Map (CoSCo-HSOM) is an extension of ideas
existent in the gesture classification and recognition research
area. Building on Hierarchical Self-Organizing systems and
cognitive models introduced by neuropsychologists, we present
the CoSCo-HSOM algorithm introducing novel features to the
previously published sparse encoding HSOM model. During
the training phase we use activity lists, i.e., ordered lists of
recently activated nodes on each level, instead of activity level
based encoding of short term memory. Furthermore, we present
how HSOMs can be used to learn and reproduce a generalized
task on the Nao humanoid robot, using only the initial posture
of the robot. The effectiveness of CoSCo-HSOM is supported
through a comparative analysis with the Gaussian Mixture
Model approach, on the same task using the same training
data.

I. INTRODUCTION

Nature has always been giving answers to our problems,
but it seems that researchers have been selective on which
models to use. Biologically inspired robots [1] bypass the
slow process of evolution by replicating animal, or human
embodiments for free. On the other hand, even though
cognitive science has not reached the point yet to reverse
engineer human brains, recent studies hypothesize the learn-
ing processes of infants in great detail [2]. In this work, we
model robots as infants with no prior experience, assuming
both organisms utilize “blank-memory”, or ’no-experience”
systems. Infant cognition can be modeled as a hierarchical
bottom-up structure and the usage of neural networks as
layers in the hierarchy is a natural selection [3].

According to the infant cognition model, infants build
complete behaviors in hierarchies. During the execution of
a gesture, or a behavior in general, infants start from the
bottom layer and go higher, until the brain gets confused. The
source of the confusion is not clear yet, but it is assumed to
be due to the addition of irrelevant noise, or similar problems.
The higher we go, the more information we gather. As soon
as the brain cannot go in a higher layer, we fall back and
from that point the gesture is reproduced going towards the
bottom layer executing the motion primitives.
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Fig. 1.  Aldebaran Nao’s initial/final posture (left) and “reading watch”
posture (right).

II. OVERVIEW OF CoSC0o-HSOM

The proposed Compressed Sparse Code Hierarchical Self-
Organizing structure (CoSCo-HSOM) is intended for learn-
ing and reproducing gestures on humanoid robots. CoSCo-
HSOM is an extension of a Hierarchical Self-Organizing
Map (HSOM) [4], introducing a novel approach in compress-
ing the sparse code signals. These signals are used as inputs
in layers higher than the bottom. A common approach is to
create in every layer long patterns of the last active nodes, i.e,
a single node match of the input during the training phase.
Depending on the memory size of the structure, the pattern
tracks the last n nodes and sets the activity level to zero on
all other nodes. A decreasing value is assigned on the active
nodes in every step. A naive model is to linearly decrease
this value!. The absolute values do not affect the structure;
it is important though to follow a decreasing pattern to track
the temporal information.

In the previously published work there is a computational
overhead. In every training step, we have to update the sparse
signal by accessing every node in all corresponding layers.
The complexity might be linear, but doing it in every training
step makes it time consuming. Instead of using activity levels
in every node, we indirectly monitor the activity in every
layer. A fixed-size FIFO queue is being updated in every
layer keeping track of the recently active nodes’ IDs. Each
queue comprises a signal, a sequence of IDs, which can be
fed up in higher layers as input, instead of sending a longer
version of the same information. The complexity of updating
the queue is constant, as we only push and pop the best and
the oldest matching node respectively in every step, without
running through all nodes in every layer.

!For example, in a system keeping track of the last four nodes, the activity
levels can be 1.0, 0.75, 0.5, 0.25, and 0.0 in older, or inactive nodes, with
1.0 being the most recently activated node in a layer.
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Fig. 2. Short term memory as activation in a hierarchical SOM.

The algorithm supports through the use of a single memory
structure the integration of both short term memory (STM)
and long term memory (LTM) [5]. The weights of the HSOM
constitute the LTM. During the learning phase, the activity
lists are used as inputs to nodes on higher levels in the hier-
archy and influence how the weights are adjusted, producing
a transferral of information from STM to LTM. As a result,
different sets of node IDs come to encode different observed
sequences. A single node represents a finite sequence of
observations and, as such, may be reused several times in
a longer sequence or by different sequences. This reuse will
be encoded by different non-zero weights in the map, where
the node has the role of an input, i.e., the map on the
layer above in the hierarchical structure. Figure 2 presents a
CoSCo-HSOM structure illustrating activity levels as ovals
of different size. In CoSCo-HSOM, each node represents a
principal component of the observed sequences of states and
actions. Figure 2 also illustrates how the most recent actions
are recorded in low level STM, while sequences of more
abstract actions are represented on higher levels. The dashed
ovals indicate sequences of a loose state-action model, i.e.,
nodes, that are referred to by nodes that are present in STM,
but are not themselves present, i.e., the abstract sequences
containing these nodes are currently active, but the nodes
themselves no longer have a raised activity level. A more
thorough description of the CoSCo-HSOM and its distinctive
features will be discussed in Section III-C.

III. EXPERIMENTAL SET-UP
A. System Architecture

Hard-coded robotic behaviors introduce many problems
to researchers, such as the lack of generalization and the
absence of reusability. In order to compensate these prob-
lems, focus has been transfered to Imitation Learning, Pro-
gramming by Demonstration and other machine learning
solutions [6]. In the context of this work, we are mostly
interested on the gesture production, and particularly on
generalizing a motion by learning gesture patterns.

In the proposed approach, we develop a novel Hierarchy
of Self-Organizing maps to reproduce gestures on humanoid
robots, by learning timed sequences of robotic postures.
A simplified version of robotic motion is the execution of
these robot posture sequences. The posture execution is a
control-based transition (linear, smooth etc.) from one pose
to another in the configuration space. In turn, a single posture
can be fully described by a time independent sequence of
joint values, whereas motions are a parallel, simultaneous
transition of all robot joints. From that point of view, the
timed sequence of values on each joint is a time series. In
our architecture, we propose an open-loop, off-line training
system for humanoid robots that learn gestures through
supervised demonstrations. The postures are being recorded
and then fed unprocessed to train the hierarchy. Once the
hierarchy has converged to its final weights in all layers,
we can then save it in a binary, or plain text format.
The memory needed to load the map in robots is fixed,
independent of the gesture’s length, and minimal compared
to large dictionaries of generalized gesture versions. Finally,
by loading the structure to the robot, it is able to reproduce
complete gestures using only its initial posture.

B. Hardware

Nao [7] is a relatively small humanoid robot. It has been
been developed by Aldebaran Robotics based in Paris, France
and is a 58 cm tall robot weighing 4.8 Kg, utilizing 25
degrees of freedom (Academics Version). The commercial
release of Nao has been planned in the near future, however
Aldebaran has achieved to promote Nao as an educational
robotic platform and a family entertainment robot affordable
to most budgets. Even though Nao’s capabilities cannot
be compared to those of other humanoid platforms, it can
potentially be considered as a benchmark platform, due to
its large popularity especially among European Institutes and
RoboCup competitions. The Nao programming environment
is based on the proprietary Naoqi framework, which serves as
a middle-ware between the robot and high-level languages,
such as C, C++, and Python [8]. Serving the generality of
our approach, this framework is being used only in terms of
strictly sending motor commands to the Nao. In that sense,
the architecture is platform, and application independent.

The training data are captured from encoders on each
joint. Joints are set in passive mode to safely move them,
or can be dynamically guided by the demonstrator through
touch interpretation. During demonstrations the “expert” user
manipulates the joints of the robot in the desired direction,
and speed, while recording data in high frequency (40Hz). It
is a good practice to record gestures using high frequency,
but in practice our approach has been proven effective
even when using way too low recording frequency. Finally,
taking advantage of CoSCo-HSOM’s nature, there are no
restrictions on what training data to use, in terms of their
semantic meaning (e.g. joint values, velocities), as long as
there is a controller to inverse the learned data to a motion
on the reproduction phase.



C. Compressed Sparse Code HSOM

Research has been wide on the generalization of complex
robotic gestures [9], [10], [11]. From a different perspective,
we hypothesize that biological models consist a comprehen-
sive approach to the problem. In this work, following the
constructive model of cognition on infants [2], we have built
an hierarchy of Kohonen Self-Organizing maps [12]. Every
layer has a different set-up, in terms of the learning factor,
learning radius, dimensions etc. and we randomly initialize
the weights in every map. The bottom layer is used for
learning different body postures with a variation of separating
the state-action input in two different inputs. The state is
the complete posture, or a part of it, whereas the action is
considered to be the state (posture) in the next timestep. For
example, at timestep ¢ the input will be S; = {Uz! Vi},
where z° is the value of joint i (or other type of variable
depending on the context of the problem). The second input
is the Syy1 = {Uz},, Vi}. The action is then a linear
transition S; — S;11 in the configuration space, which is
a single step prediction at the bottom layer, i.e., a gesture
primitive. Following the path from the top to lower levels, we
retrieve complex gestures expressed as a temporal sequence
of primitives.

1) Training Phase: The CoSCo-HSOM algorithm has to
be trained using training data in a sequential way, in contrast
to usual random feeding of Kohonen maps. The order of the
data implies the steps to accomplish the task. The distinctive
characteristic in our approach is that in every layer we update
a fixed size FIFO activity list tracking the IDs of active
nodes. An ID is the (z,y) position in the discrete 2D grid of
every map. The ID of the best matching unit in every training
step in the bottom layer is pushed in the activity list, and the
ID of the oldest node is popped, if the list is full. The size
of the list is set by the user and we call it memory. An
important step is to clear all the activity lists every time a
complete gesture has been fed to the algorithm. Otherwise,
all the training sessions are considered as a long gesture
causing replications of the actual gesture. In general, this
approach is sensitive to replicating the same motion during
the reproduction phase.

Time-compression of long gestures is being achieved by
training every layer exponentially. In every training step, the
bottom layer is being trained, but the upper layers are trained
every updatePeriod'¢’®! steps, where updatePeriod is
again hard-coded by the user, and level is the level of each
layer counting from O (the bottom layer)?. Eventually, even
long sequences can be encoded in a compact architecture
without loss of valuable information. Finally, the use of
activity lists, instead of complete activity maps of sparse
signals in every layer, reduces the memory requirements, and
running cycles of the hierarchy.

2) Reproduction Phase: Gesture recognition [13], rather
than reproduction in robots, is where related work focus on.

2For example, if the updatePeriod is 2 in a three layer architecture,
after training step 7, the bottom will have been trained 7 times (at steps 1,
2, 3 ...), the second layer 3 times (at 2, 4, 6 ) and the third only 1 (at 4)

Fig. 3. Pre-processed training data for GMM

In this work, we propose a novel approach of reproducing a
learned gesture in humanoid robots. The gesture reproduction
cannot start though, before the controller builds a short
history. The history is a small number of occurrences at the
bottom layer, that will allow confidently to go higher in the
hierarchy to gather more gesture related information. Clearly
the history dependence is a drawback, but our goal is with no
prior knowledge and only using the trained HSOM, and the
current posture of the robot to reproduce a complete gesture.

CoSCo-HSOM starts with a prediction of the next posture
using the initial as input. The output at the bottom layer will
be the next posture and an occurrence of the winning node
will be added to the bottom layer’s activity list. We follow the
same process, until we have built a “considerable” amount
of matches at the bottom layer. “Considerable” is expressed
as a manually set of fset of the maximum memory defined
for the system. For example, if the memory is four, then a
node in the second layer represents four nodes at the bottom.
Having three matches at the bottom layer, we can confidently
predict the fourth by visiting the layer up. In that level, the
best matching unit is found using only the three occurrences,
ignoring the fourth. As soon as we predict the fourth node,
we execute it and continue in the same way to the upper
layers. The of fset is not static and allows us to study the
effect of more aggressive predictions.

One could argue, that the first steps of the reproduction
are naive gesture primitives, resulting in poor reproduced
gestures. This is partially true, but we expect to get better
predictions in the short future, after having built the required
history to find occurrences in higher levels. The higher we
g0, the more confidently we predict. As soon as we decide to
move downwards, the predicted node points to the directly
lower layer in memory different, or same nodes. In turn,
each node points to other nodes in lower levels. The predic-
tion of a sequence of primitives is a tree traversal problem.
Particularly, we follow a Depth First Search approach starting
from the oldest node. The older nodes are in the end of every
activation list (we insert from the beginning and pop from the
back). Thus, the oldest primitive can be found by following
the rightmost node in every activation list, and the newest the
leftmost. Then, we simply append the pattern of postures
to the so far predicted gesture and eventually execute the
transition from posture to posture.



All weights in the Kohonen maps have been initialized
with real numbers. In the bottom layer, this is not a problem,
as the posture of the robot has the same structure. In higher
layers though, where we learn activity lists with IDs, these
will be natural numbers (indexes in a 2D matrix, or the
position in the topology). In order to solve that practical
problem, we use the rounded signal (might need the floor
of the ID, if it didn’t converge fast) to get the indexes.
Another solution could be to find the closest node, according
to the euclidean distance of the prediction, and the nodes
in the lower layer. The last solution though, introduces a
computational overhead, wasting the advantage of predicting
gestures with linear complexity.

D. Configuration

The system described is fully customizable, through a
XML file. memory, updatePeriod, state — action’s size,
trainingSteps, the height of the hierarchy, the size and
topology of every layer, the learning radius, and the learning
factor are customizable, allowing for experiments with vari-
ous setups. It worths mentioning, that the learning factor has
to be different in every layer using a small learning factor
at the bottom layer and more aggressive factors as you go
higher. It is obvious that the higher layers are being trained
infrequently. Different learning factors eliminate the trade-
off of finding a good learning factor for all layers, which is
not possible especially in our work, where we tend to train
hierarchies, even to the height of six or more.

IV. EXPERIMENT

We present an experiment with the Aldebaran Nao robot
learning a simple gesture. We also compare our motion with
the Programming by Demonstration approach, which uses
Gaussian Mixture Models [10]. With the assumption that
the CoSCo-HSOM algorithm is model-free, we argue that
this method is generic, and transferable to other types of
robots. A simple gesture similar to raising the left arm at the
“reading watch” position is used to verify the effectiveness
of the reproduction phase. The initial, and final postures are
the same, making the experiment even more complex.

The task consists of training the Nao robot with the help
of an expert supervisor to learn, and reproduce the desired
gesture (Figure 1). We use three similar training sessions
of one gesture. For this experiment, we have only used the
left arm’s six DOFs (we present the four though, as the
Wrist and Fingers are not used) as a training set, and not the
complete configuration of the robot. The time series of all
three training sessions for each joint are shown in Figure 4.
Obviously, the training data have not been processed in any
way, and this is one of the advantages of this approach.
CoSCo-HSOM does not need any pre-processing steps, and
raw data can be used without problems. All the details
concerning the exact configuration used in this experiment is
in Table I (all layers have Orthogonal topology; Hexagonal
is also an option). The reproduced gesture of the trained
hierarchy is the black line in Figure 4. A thorough discussion
of the results follows in Section V.

TABLE I
CONFIGURATION OF HIERARCHICAL SOM

Hierarchy

Height - number of levels : 6
Memory - size of STM : 4
(activation lists)

Update Period : 2

Training Steps : 5000

State Length : 6

Action Length : 6

Learning Factors / Grid Size
Level 5:08/1x1
Level 4:06/2x2

Level 3:05/6x6
Level 2:03/8x8
Level 1:0.2/10x 10
Level 0:0.1/16 x 16

A. Future Experiments

The presented experiment is only a part of our initial
results and serves the purpose of a qualitative comparison of
the reproduced gestures against other methods. We currently
explore the effect of different configurations in various ges-
tures and how the CoSCo-HSOM can handle multiple gesture
production within a single hierarchy. We expect to encounter
difficulties in the reproduction phase, where having learned
different gestures, sharing similar, if not the same initial
postures, will create perturbations in the motion.

Taking advantage of the modular architecture, we also
research methods of building hierarchies of HSOMs. This
work can potentially be used on learning behaviors from
sequences of complete gestures. Our future plans, include
an extensive analysis of the limits of this work in various
domains, where the CoSCo-HSOM could be proved useful.
We are also confident that sensorimotor control applications
will take advantage of this approach. This area is open
now and we are looking forward to fitting our work in the
reproduction of cognitive models in robotics.

V. DISCUSSION AND RELATED WORK

The cost of humanoid robots has been dropped signif-
icantly in the last years, attracting more research groups,
and even independent researchers explore methods similar
to gesture learning. The idea of using neural networks to
learn, generalize, and reproduce gestures, or behaviors is
not novel. A simple way to represent robotic motions is the
use of temporal sequences, or time series. Self-Organizing
Incremental Neural Networks (SOINN) and Dynamic Time
Warping(DTW) have been successfully used in the recogni-
tion of temporal gesture data from humans [14]. The classi-
fication of different gestures is an integral part in cognitive
robotics to allow for conscious reproductions. It has been
shown that SOINN-DTW method outperforms approaches
based on Hidden Markov Models.

A related approach to CoSCo-HSOM uses a three layer
Kohonen neural network on a mobile robot to learn tem-
poral sequences of behavior primitives to acquire behav-
ioral plans [15]. The hierarchy constitutes from the motor
layer (motor drives) at the bottom, the sense layer (energy
consumption, brightness sensor, range sensor etc.) at the
second level, and at the top level the temporal layer tracking
the behavioral sequences in the lower layers. Even though
this approach has been successfully used in the simulated
environment of the WAMOEBA-1R mobile robot, it cannot
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Fig. 4. Raw training data from three training sessions. The black line represents the reproduced motion.

be easily transfered to more complex environments in hu-
manoid robots as the sensor layer is divided and hard-wired
to platform specific inputs. Furthermore, the lack of temporal
compression during the learning phase makes it impossible
to learn longer behaviors than the size of the map at the
temporal layer.

Recurrent neural networks (RNN) have been investigated
for learning multiple temporal sequences [16] and later
extended to learning more complex tasks of ball, and blocks
manipulations on a humanoid robot [17]. Even though RNNs
have been successfully used in various applications, they
suffer a number of drawbacks [18] such as the high compu-
tational training costs, the possibility of getting stuck in local
minimum, their slow convergence, and the problem of learn-
ing long term dependencies [19]. Echo State Networks (ESN)
is a recent approach leading to simpler training algorithms
for RNNs performing well in time series prediction [20].
Another application is in mobile robotics, where learning
behavioral patterns is essential [21]. ESNs have been praised
for their simplicity, but setting them up is an important step
for the behavior of the system. Besides ensuring the “echo
state property” to avoid chaotic behaviors [22], recent studies
point out the importance of the asymptotic stability of ESNs
running with output feedbacks [23].

Another approach is the use of Gaussian Mixture Mod-
els [10]. As our work is novel in gesture reproduction, we
compare our solution with the GMM model. Even though the
algorithms have nothing common to share, they both solve

the same problem. Serving the objectiveness of the analysis,
we use almost the same training data in both approaches. The
raw data of the training sessions are in Figure 4 (excluding
the black line).

One of the key features of CoSCo-HSOM algorithm is the
ability to directly feed it with the training data, whereas in the
GMM model a pre-processing step is required. We have also
ignored the beginning, and the end of all training sessions,
to partially align the signals®. After the alignment process,
we resample the signals, in order to get a fixed number of
points. The final training dataset for the GMM approach is
in Figure 3, and can be compared with the data used in the
CoSCo-HSOM (Figure 4).

We can point out three weaknesses of the CoSCo-HSOM.
Firstly, there is some oscillation in the first steps of the re-
produced gesture. As mentioned in Section III-C.2, the agent
presents a reflexive behavior (currentState — nextState)
in the very beginning, until it builds a short history. Even later
though, we get sharp edges. This is virtually unavoidable,
due to the nature of HSOM, where in practice it detects the
principal components of a gesture; therefore, we compress
the gesture information to retrieve the gesture’s key poses.
Finally, a consequence of that is the absorption of the time
variant, making the algorithm perfect for gesture recognition,
but “problematic” for gesture production. The controller

3Demonstrators unconsciously tend to keep the same speed during the
motions. Surprisingly, throughout every session we got large variance in
the duration of inactivity, before the actual demonstration.



Fig. 5.  Left Shoulder Pitch. The green areas are the Gaussians used
to encode the signals, where the thick blue line is the final trajectory to
reproduce. The light blue envelope, around the trajectory, represents the
expected variations, and the dark points are the training sessions.

has to implicitly decide the length of the gesture while
executing the transition between postures. Paradoxically, we
take advantage of that “problem”, as it allows incremental
retraining across experts, with no prior knowledge of the
gesture’s temporal information. Researching more on differ-
ent configurations, we expect to further improve the results
and avoid any oscillations, or spikes during the reproduction
phase. In the accompanied video, it is clear that even with
these oscillations, the reproduced gesture remains smooth
enough to be acceptable for execution.

In Figure 5, we present only the GMM’s reproduction
of the “Left Arm Shoulder Pitch” joint. It is obvious that
the GMM approach, produces smooth motions and manages
to remain smooth on the transition from one motion to
another. It is also clear that the GMM algorithm manages to
reproduce gestures without losing any temporal information.
The memory requirements (centers, and covariance matrices
of Gaussians) are even smaller. One of the drawbacks of this
work, is that if we were using raw data, without aligning
the signals using DTW [24] (the resampling process is
unavoidable), the reproduced motions would not be nicely
constraint [10] to get a meaningful reproduction through
Gaussian Mixture Regression.

VI. CONCLUSION

We have presented the CoSCo-HSOM algorithm, an hi-
erarchical Self-Organizing map that manages to learn, and
reproduce gestures in humanoid, and general purpose robots.
A simple experiment helped us understand the effectiveness
of our approach, and its novel characteristics. We also
made a comparative discussion against other neural network
approaches, and the Gaussian Mixture Model algorithm. Our
future plans include an extensive analysis on the limits of this
work in humanoid gesture recognition, and reproduction. We
are confident that sensorimotor control applications will take
advantage of this approach and we expect to explore these
areas. Finally, further testing in other domains will provide us
with a thorough understanding of CoSCo-HSOM’s behavior.
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