An Interactive Tool for Designing Complex Robot Motion Patterns

Georgios Pierris and Michail G. Lagoudakis

Abstract— Low-cost robots with a large number of degrees
of freedom are becoming increasingly popular, nevertheless
their programming is still a domain for experts. This paper
introduces the Kouretes Motion Editor (KME), a freely-available
interactive software tool for designing complex motion patterns
on robots with many degrees of freedom using intuitive means.
KME allows for a TCP/IP connection to a real or simulated
robot, over which various robot poses can be communicated
to or from the robot and manipulated locally using the KME
graphical user interface. This portability and flexibility enables
the user to work under different modes, with different robots,
using different host machines. KME is originally designed
for the Aldebaran Nao humanoid robot which features a
total of 21 degrees of freedom, but can be easily customized
for other robots. KME has been employed successfully by
Kouretes, the RoboCup team of the Technical University of
Crete, for designing various special actions at the RoboCup
2008 competition (Standard Platform League).

I. INTRODUCTION

Low-cost robots with a large number of degrees of free-
dom are becoming increasingly popular, spanning all ranges
from entertainment to education and research. Such examples
include the Robotis Bioloid, the Hitec Robonova, the Sony
Aibo, the RoboSoft Robudog, the Boston Dynamics Little
Dog, the ZMP Pino, the Robotis Uria, the VStone Vision,
the Fujitsu Hoap, and recently the Aldebaran Nao robots.
Nevertheless, programming such robots beyond trivial com-
binations of precompiled actions is still a domain for experts.
This is dictated by the fact that most non-trivial motion
patterns require simultaneous move of several robot joints,
while satisfying at the same time dynamic, kinematic, safety,
and stability constraints.

This paper introduces the Kouretes Motion Editor (KME),
an interactive software tool for designing complex motion
patterns on robots with many degrees of freedom using
intuitive means. The main idea behind KME is the ability to
generate, capture, store, manipulate, edit, replay, and export
sequences of complete robot poses, which resemble the
desired complex motion pattern. KME allows for interactive
design through a TCP/IP network connection to a real or
simulated robot, over which various robot poses can be
communicated to or from the robot and manipulated locally
using the KME graphical user interface. This portability and
flexibility enables the user to work under different modes
(configuration or cartesian space), with different robots (real
or simulated), using different host machines (for running
KME itself).

Pierris and Lagoudakis are with the Intelligent Systems Laboratory,
Department of Electronic and Computer Engineering, Technical Univer-
sity of Crete, Chania, 73100, Greece gpierris@isc.tuc.gr,
lagoudakis@intelligence.tuc.gr

KME was originally designed for and currently supports
only the Aldebaran Nao humanoid robot (RoboCup edition
v3) [1], which features a total of 21 degrees of freedom, and
its simulated model on the Webots simulator [2]. However,
the main features of KME can be easily configured for
other robots and the tool itself could be used for a variety
of purposes, such as providing complex motion patterns
as starting points for learning algorithms and supporting
educational activities in robot programming courses. KME
has been employed successfully by Kouretes, the RoboCup
team of the Technical University of Crete in Greece, for
designing various special actions (stand-up, ball kicks, goal-
keeper actions, bending of body), thanks to which the team
ranked in the 3rd place at the RoboCup 2008 competition
(Standard Platform League).

The remainder of the paper is organized as follows.
Section II describes the Aldebaran Nao robot and Section III
covers the features, functionality, and all technical aspects
of KME. Section IV demonstrates a successful application
of KME to the RoboCup competition, while Section V
compares KME to a variety of similar motion editors, before
discussing future work and concluding in Section VI.

II. THE ALDEBARAN NAO ROBOT

Nao is a 58 cm, 4.3 Kg humanoid robot (Figure 1)
developed by Aldebaran Robotics based in Paris, France. Nao
has not been released commercially yet, however Aldebaran’s
goal is to eventually promote Nao as an educational robotic
platform and a family entertainment robot affordable to most
budgets. The initial limited edition of the robot (RoboCup
edition v2) made its debut at RoboCup 2008, as Nao was
selected to be the official robot platform of the Standard
Platform League.

The Nao robot carries a full computer on board with an
x86 AMD Geode processor at 500 Mhz, 256 MB SDRAM,
and 1 GB flash memory running an Embedded Linux dis-
tribution. It is powered by a 6-cell Lithium-Ion battery
which provides about 45 minutes of continuous operation and
communicates with remote computers via an IEE 802.11g
wireless or a wired ethernet link. The Nao robot features
a variery of sensors and actuators. Two 30fps, 640x480
color cameras are mounted on the head in vertical alignment,
but only one is active at each time and the view can be
switched from one to the other almost instantaneously. The
two cameras provide non-overlapping views of the lower and
distant frontal areas. A pair of microphones allows for stereo
audio perception. Two ultrasound sensors on the chest allow
Nao to sense obstacles in front of it and a rich intertial unit
(a 2-axis gyroscope and a 3-axis accelerometer) in the torso

AT,
;;ﬁ‘

Fig. 1. The Aldebaran Nao Humanoid Robot (RoboCup Edition v3).
[picture from www.aldebaran-robotics.com]

provides real-time information about its instantaneous body
movements. Finally, an array of force sensitive resistors on
each foot delivers feedback on the forces aplied to the feet,
while encoders on all servos record the actual joint position
at each time and two bumpers on the feet provide information
on collisions of the feet with obstacles. The Nao robot has
a total of 21 degrees of freedom; 4 in each arm, 5 in each
leg, 2 in the head, and 1 in the pelvis (the 2 pelvis joints
are coupled on one servo and cannot move independently).
Stereo loudspeakers and a series of LEDs complement its
motion capabilities with auditory and visual actions.

The Nao programming environment is based on the pro-
prietary Naoqi framework which serves as a middleware
between the robot and high-level languages, such as C, C++,
and Python. NaoQi offers a distributed programming and
debugging environment which can run embedded on the
robot or remotely on a computer and offers an abstraction for
event-based parallel and sequential execution. Its architecture
is based on modules and brokers which can be executed
onboard the robot or remotely and allows the seamless
integration of various heterogeneous components, includ-
ing proprietary and custom-made functionality. A simple,
higher-level, user-friendly programming environment is also
provided by the recently released proprietary Choregraphe
software, which is further discussed in Section V due to
its similarity to KME. Finally, there are realistic computer
models of the Nao robot available for both the Webots robot
simulator and the Microsoft Robotics Developer Studio.

III. KOURETES MOTION EDITOR
A. KME Concept

The goal behind the development of KME is to provide
an abstract motion design environment for the common robot
practicioner, which hides away the technical details of low-
level joint control and strikes a balance between formal
motion definition using precise joint angles in the config-
uration space of the robot and intuitive motion definition
using manual joint positioning in the real-world work space
of the robot. Such an abstraction yields a number of benefits,
which served also as the driving force behind this work:
(a) arbitrarily complex motion patterns can be easily de-
signed without ever writing a single line of code, (b) motion
patterns can be rapidly designed and tested through a simple

and friendly interface, (c) motion patterns designed by one
user can be easily shared, understood, used, and modified
by other users, (d) various real and/or simulated robots
can be accommodated simply by reconfiguring the back-
end of the tool, (e) resulting motion patterns can be used
as seeds in learning algorithms for further fine-tuning, and
(f) proprietary motion patterns could be reverse-engineered
as recorded sequences of complete or partial robot poses and
subsequently manipulated at will.

Towards this end, KME is implemented as a client-server
architecture, whereby the client and the server sides are
interconnected over a TCP/IP network as described below.
The server is a special “controller” attached to the real or the
simulated robot, in the sense that it is platform-dependent,
resides either on the robot or on some machine connected
to the robot, and has the ability to directly control the robot
joints. The server simply listens for a client on specific ports
and undertakes the role of transferring joint values between
the robot and the client, once a client is connected. The
client is an independent software application running on the
local or any remote machine and provides the graphical user
interface (GUI) described below. Communication between
the client and the server is bi-directional; any set of joint
values provided by the client can be transferred to the
server and drive the robot joints to the designated pose,
and conversely the current joint values on the robot can be
read and transferred from the server to the client for storage
and further manipulation. Note that other platform-dependent
information, such as sensor readings, can be communicated
between the client and the server, if necessary, with appropri-
ate adaptation of both the client and the server. Also, several
clients can be connected to and/or disconnected from a single
server to facilitate access to the robot from multiple KME
users, mostly as a means of enabling quick user switching
and coping with network failures, and less for simultaneous
motion editing, which is certainly not recommended.

For maximum portability, it was decided to use open
source software for the development of KME. In particular,
the core client code is written in C++ and can be compiled
under any popular operating system (Linux, Windows, Ma-
cOS) using a standard C++ compiler. The current graphical
environment is based on FLTK libraries [3], however the
core client code is structured in a way that allows interfacing
with other popular graphical toolkits, such as QT and Tcl/Tk.
Finally, the server code for the Nao robot has been written
in the interpreted script language Python for simplicity and
portability. Our preferred execution mode is to run the server
on a remote machine which communicates with the Nao
robot using the distributed NaoQi architecture.

B. Networking

All interprocess communication between server and client
is based on the TCP/IP protocol. Once started, a server
looks for an available port beginning from port 50000 and
increasing the port number by 1 until an available port is
found or a predefined limit is exhausted. If a port is found,
the server listens for clients connecting to that port. When

Kouretes Motio

T HeadYaw HeadpPitc|

TN Arm Stiffness

Port: 50000 LShoulderPitch RShoulderPitch

Connected Io,149 _@_I Inde$ | Left & 0.385
== o LShoulderRoll RShoulderRoll
Koo g VR - I————F nacs|iers| o032 ———)—

|

Technical {niversity of Crete
LEIbowRol

Stiffness Value

LA K LEIbowyaw REIbowyaw
7&5 P ouretes m@_ Inde# | Left ¢ 1.292

Stiffness: «0On () Off EII] 0.9 [IIE] 0337 o Inde& | Left& 0.166

| REIbowRoll

|

P LHipYawPitch RHipYawPitch
Monitor | Speech - Leg Stiffness :
I-o.351 _@_I = lo 000 |e—— I

LHipRoll RHipRoll
W Inde® | Left s G E
LHipPitch RHipPitch

I,o_nz _@_I Inde % | Left I70.773 _@_I

LKneePitch RKneePitch
m Ind_selﬂl 2194 |———————— =
LAnklePitch RAnklePitch
lm.@= ERIEN (i
LAnkleRoll v v RankleRoll

Io,054 _@_I Inde$ | Left & Iro.llo —@_I

Total Sequence Time : 7.900 [Update Pose

Capture Pose Insert Pose

LI

Istore Pose,

01.210%0.219%-1.

play%-0.617%-0.000%1.209%0.218%-1.238%-0.339%-0.3429%-0.048%-0.764%2.18
play%-0.003%0.528%0.149%0.574%-1.238%-0.337%-0.353%-0.048%-0.772%2. 187%-1.230%0.054%0.000%0.109%-0.766%2.194%-1.235%
play%-0.005%0.526%0.149%0.574%-1.240%-0.337%-0.353%-0.048%-0.772%2.187%-1.230%0.054%0.000%0.109%0.767%2.194%-1.233%
play%-0.584%0.057%0.149%0.574%-1.238%-0.337%-0.351%-0.049%-0.772%2.187%-1.230%0.054%0.000%0.109%-0.773%2.194%-1.233%

Step Motion

play%-0.572%0.067%1.209%0.219%-1.238%-0.339%-0.351%-0.043%-0.758%2.187%-1.232%0.054%0.000%0.101%-0.759%2.195%-1.233%
play%0.184%-0.460%1.209%0.219%-1.238%-0.337%-0.350%-0.048%-0.768%2.187%-1.232%0.055%0.000%0.101%-0.764%2.194%-1.233%
play%o0. 175%0 362%1.209%0.219%-1.238%-0.339%-0.354%-0.046%-0.768%2.187%-1.232%0.052%0. 000%0 109%-0.767%2.194%-1.233%-

Move Up

Move Down

7%-1.232%0.054%0. 000%0 109% 0. 766%2 195% 1.2339

1]

I—1 | P'2Y Motion

Fig. 2. Graphical user interface

started, the client must use the port number posted by the
server to establish a connection. All messages exchanged
over the network use simple ASCII-based structure for max-
imum portability purposes. Most messages contain complete
robot poses, but there are also other smaller messages, for
example, for initializing the connection, setting joint stiffness
values, or communicating optional sensor information. The
largest message communicated between client and server has
a size of 144 bytes and corresponds to a complete robot pose
description consisting of 22 signed floating-point numbers
with 5 or 6 ASCII characters per number ([-]x . xxx format)
separated by a marker (%). Messages are exchanged over
the network only as needed; the client talks to the server
only when the robot pose set by the client changes and
symmetrically the server talks to the client only when the
current pose on the server side is requested by the client.

It is quite important to understand that communication
must meet real-time constraints given that any change on
the client side must be immediatelly reflected at the robot
joints on the server side. The requirement of minimized
latency is dictated not only by efficiency goals, but also
by safety concerns; a motion executed on the robot several
seconds or minutes later than expected due to a network
freeze or congestion may have fatal consequences. Under

of the Kouretes Motion Editor.

the current communication protocol, the server and the client
run smoothly and transparently in a robust and predictable
way even over the wireless link between the robot and the
computer.

C. The Graphical User Interface

The KME graphical user interface (GUI) provides the
means for the creation, capture, management, storage, re-
production, and export of any sequence of robot poses. The
entire GUI consists of three components as shown in Fig-
ure 2. The component on the left-hand side contains the menu
for file operations, the form and buttons for establishing a
connection to a server using a specific port number, the radio
button for turning joint stiffness on and off, and a tabular
display for visualizing optional platform-specific sensor in-
formation. The component on the right-hand side offers 22
sliders, one for each joint of the robot; two of them (L/R
HipYawPitch) are coupled together by default. Notice that the
layout of the sliders resembles the location of the joints on
the Nao robot and each joint chain (arm or leg) is marked by
a distinct color. The user can set the value of any joint either
by sliding the corresponding slider to the desired position or
by setting directly the desired arithmetic value. Any change
made to a joint value is immediately communicated to the
robot through the server (if stiffness on the robot joints

is enabled), therefore the current robot pose coded by the
slider values is always reflected on the robot. Symmetric
joints, for example LShoulderPitch and RShoulderPitch, can
be optionally coupled using the corresponding drop-down
menus to select the type of coupling (matching or mirrored
configuration) and the dominant joint (left or right). This
feature is useful for creating symmetric or anti-symmetric
motion patterns. A series of check buttons can be used to
turn on/off stiffness locally on specific joint chains to allow
design of motion patterns using only a single joint chain.
Finally, the component at the bottom is a robot pose sequence
editor. The sequence of poses can be edited as needed; poses
can be inserted to or deleted from the sequence, they can be
swapped with other poses, and they can be moved up and
down to the desired place in the sequence. The KME GUI
can be customized for any robotic platform using an .xml
configuration file which contains the total number of joints,
a unique name for each joint, a maximum and a minimum
value for each joint, the step size of value changes for each
joint, a color for the slider of each joint, and the offered
couplings between pairs of joints.

D. Motion Design

Any complex motion pattern created using KME is a
timed sequence of robot poses in the configuration space.
Robot poses can be created either by setting joint values
through the sliders of the GUI or by capturing the current
joint values of the real or simulated robot. The current robot
pose coded in the sliders can be captured and stored at the
end of the sequence using the “Store Pose” button or right
after the currently selected position using the “Insert Pose”
button . The “Update Pose” button can be used to update the
currently selected pose with new values. Alternatively, for
pose generation the user may manually move the robot joints
to any desired configuration (under no stiffness) and use the
“Capture Pose” button to capture the current joint values. The
user can also adjust the transition time between subsequent
poses, which implicitly determines the speed in the motion
of each joint. The time value stored with each pose is the
transition time from the previous pose to the current one.
Finally, the user can “play” the current pose sequence from
any point (either in a step-by-step fashion or continuously)
to observe the complete motion pattern on the robot. Once
the desired movement is complete, the pose sequence (or its
symmetric one according to the sagittal plane of the robot
body) can be exported to a file and can be further used within
any robot controller by simply invoking a motion execution
routine.

Designing motion patterns using KME can become a lot
more interactive, as we discovered along the way. Consider
two consequent robot poses A and B. The user may want the
robot to move from pose A to pose B in a certain amount of
time, however this may not be possible because of limited
acceleration or mechanical load constraints. Using the step-
by-step execution, the user may try to play the pose transition
from A to B, however the robot may end up in some other
pose C under insufficient time or under mechanical load

stress on the servos. Instead of trying to fix pose B (or A),
the idea is to capture pose C from the current joint values;
the transition from A to C is clearly a safe one. The design of
the remaining motion pattern begins now from C and may
shoot either for B (if possible) or for another target robot
pose. Building the motion pattern in this iterative manner
yields a motion sequence which complies with time and load
constraints.

E. Motion Execution

Motion patterns designed using KME can be subsequently
incorporated and reproduced within any robot controller
without requiring the presence of KME itself. This is accom-
plished using a simple C++ routine which simply executes
the stored motion patterns. In particular, the KME files found
on board the robot are loaded into the main memory during
initialization. A call for motion execution specifies the name
of the desired motion pattern and a time-scaling factor (a
real number around 1.0). The executor routine retrieves the
specified pose sequence and executes the poses sequentially
using a linear interpolation between them to avoid motion
jerkiness. The time-scaling factor is used for speeding up or
slowing down the execution as it multiplies the time values of
each pose. A value of 1.0 corresponds to the nominal stored
execution time; the user may optionally export the scaled or
the nominal time values in the motion file. It should be noted
that the motion executor is a simple open-loop scheduler;
unexpected and/or uncertain events should be handled by a
higher-level behavior module.

IV. EMPIRICAL EVALUATION
A. The RoboCup Competition

In its short history, the RoboCup competition [4] has
grown to a well-established annual event bringing together
the best robotics researchers from all over the world. The
initial conception by Hiroaki Kitano in 1993 led to the forma-
tion of the RoboCup Federation with a bold vision: “By the
year 2050, to develop a team of fully autonomous humanoid
robots that can win against the human world soccer champi-
ons”. The uniqueness of RoboCup stems from the real-world
challenge it poses, whereby the core problems of robotics
(perception, cognition, action, coordination) must be ad-
dressed simultaneously under real-time constraints. The pro-
posed solutions are tested on a common benchmark environ-
ment through soccer games in various leagues,with the goal
of promoting the best approaches, and ultimately advancing
the state-of-the-art in the area. Beyond soccer, RoboCup
now includes also competitions in search-and-rescue mis-
sions (RoboRescue), homekeeping tasks (RoboCup@Home),
robotic performances (RoboDance), and simplified soccer
leagues for K-12 students (RoboCup Junior).

B. The Standard Platform League

The Standard Platform League (SPL) [5] of the RoboCup
competition (Figure 3) is among the most popular leagues,
featuring two to four humanoid Aldebaran Nao robot players

Fig. 3. Standard Platform League at RoboCup 2008 in Suzhou, China.

in each team. This league was formerly known as the Four-
Legged League featuring Sony Aibo robots which were
replaced in 2008. Games take place in a 4m x 6m field
marked with thick white lines on a green carpet. The two
colored goals (skyblue and yellow) also serve as landmarks
for localizing the robots in the field. Each game consists of
two 10-minute halves and teams switch colors and sides at
halftime. There are several rules enforced by human referees
during the game. For example, a player is punished with a
30-seconds removal from the field if he performs an illegal
action, such as pushing an opponent for more than three
seconds, grabbing the ball between his legs for more than
three seconds, or entering his own goal area as a defender.

The main characteristic of the Standard Platform League
is that no hardware changes are allowed; all teams use the
exact same robotic hardware and differ only in terms of their
software. This convention results to the league’s characteriza-
tion by a unique combination of features: autonomous player
operation, vision-based perception, legged locomotion and
action. Given that the underlying robotic hardware is com-
mon for all competing teams, research efforts have focused
on developing more efficient algorithms and techniques for
visual perception, active localization, omnidirectional mo-
tion, skill learning, and coordination strategies. During the
course of the years one could easily notice a clear progress
in all research directions.

C. KME at RoboCup 2008

KME was employed on Nao v2 by Kouretes, the RoboCup
team of the Technical University of Crete, during the
RoboCup 2008 competition which took place in Suzhou,
China in July 2008. A much-needed motion in the SPL-
Nao league is that of standing up after a fall. Using KME,
it was fairly easy to design a stand-up motion pattern to
recover from a fall (Figure 4) in reasonable time. It was
discovered that the servos on the Nao v2 arms are quite weak
to support its body weight, therefore one needs to carefully
move most weight to the legs for a successful stand-up. It
was also discovered that to recover from a face-up fall (or
even a side fall), it was best to move first into a face-down
pose and then execute the stand-up motion. The complete

stand-up procedure uses the intertial sensors of the robot
to determine the orientation of the robot body after a fall
and executes appropriate motions that first bring the robot
to a face-down pose before attempting a stand-up motion.
Surpisingly, this stand-up motion designed on the carpet
at the home laboratory did not work on the carpet at the
competition venue. Thanks to KME, it took only about 30
minutes and two people holding the robot to design a new
stand-up motion for the new carpet from scratch. KME was
also used for designing other needed movements for the Nao
league (bending of body, ball kicks, and goalkeeper actions).

The accompanying video file demonstrates the main fea-
tures of KME and the motion patterns designed using KME
and employed by Kouretes during the RoboCup 2008 compe-
tition. All clips from RoboCup 2008 were taken during actual
games. Kouretes was the only one of the 15 participating
teams that demonstrated a live stand-up motion and one of
the few teams that used goalkeeper actions during the games.
The team ended up winning the 3rd place in the league and
a good deal of this success was due to KME.

V. RELATED WORK

KME offers some innovative ideas, however it also bears
similarities to other existing tools for designing complex
motion patterns. Choregraphe [6] is a proprietary software
package developed by Aldebaran Robotics to facilitate com-
plex behavior programming on the Nao robot. Its beta release
came out in June 2008, well after the development of KME,
but the functional release came out only in January 2009.
Choregraphe offers a cross-platform environment that allows
the user to build various movements and behaviors on a real,
a simulated, or a VRML model of the Nao robot. To this end,
it combines time-based and event-based approaches. Time-
based design is used to schedule motions and multimedia
material over time. Different timelines can be used depending
on the current execution context. An event manager is
responsible for identifying the current context based on the
occurence of events and triggering the appropriate behaviors.
The MEdit tool [7] was developed by Sony for the popular
Aibo robot featuring a total of 20 degrees of freedom. MEdit
is a graphical tool that allows users to generate complex
motion patterns as sequences of poses. Unfortunately, its first
(and only) release was incomplete in terms of functionality.
While the design of motion patterns can be done through
direct setting of joint values or through manual joint po-
sitioning on a VRML robot model, export and integration
of such motion patterns into generic robot controllers and
applications is rather cumbersome (each pose is saved as a
separate file and the motion is uploaded to the robot only
through the custom-made R-Tool and triggered only through
the custom language R-Code). Skitter [8] is another motion
editor for Aibo robots with more capabilities. It allows
combinations of motions (20 degrees of freedom), lights (32
independent LEDs), and sounds (MIDI and WAV playback)
along a time line. Such combinations are calleds skits and can
last up to 4 minutes. Skits are designed using plots over time
and a VRML robot model which can be manually positioned

Fig. 4. Nao standing up from a face-up fall (demonstration at RoboCup 2008).

for capturing poses. The resulting motion patterns can be
exported for use on the real robot, again only through R-
Code. Finally, Motion Designer [9] is a tool developed by
the RoboCup team Microsoft Hellhounds and comes in two
versions, one for the Aibo and one for the Nao robot. Motion
Designer allows the design of complex motions interactively
with the real robot by offering several manipulation functions
on timed sequences of poses and a custom transition editor
for combining different motions.

Choregraphe’s capabilities are well beyond KME capabil-
ities, however it is not customizable and comes with heavy
system requirements for reasonable real-time performance.
MEdit and Skitter are tied only to the Aibo robot and do
not support direct interaction with the real robot. MEdit,
Skitter, and Motion Designer are available only for the
Windows™ operating system. Apart from these differences,
the distinguishing feature of KME missing from the tools
mentioned above is the ability to directly interact in real-time
with the real (or a realistically simulated) robot and design
safe and robust motion patterns in an iterative manner, as
well as the flexibility in incorporating the resulting motions
in a variety of robot software architectures. It is important to
stress out the fact that working directly with the real robot
overcomes several difficulties occuring when motion patterns
designed on a VRML model without sense of physics and/or
mechanical, dynamic, and kinematic constraints do not yield
the desired effect on the real robot. KME currently focuses
only on motion, ignoring light and sound, which really fall
outside its scope and purpose. In summary, KME comple-
ments the existing tools by providing an alternative, flexible,
effective, interactive, and customizable motion-design tool,
when motion alone is at focus.

VI. FUTURE WORK AND CONCLUSION

Our short-term plan is to add several bells and whistles to
the next release of the KME, such as support for partial
configuration manipulation and/or execution over selected
subsets of joints, motion safety and feasibility analysis, and
constrained motion planning for interpolating between poses
in the motion sequence using arbitrary criteria. In addition,

we plan to release configuration files and server code for
the Sony Aibo and the Robotis Bioloid robots. A major
feature step would be to allow for manipulation of various
control structures (events, loops, branches, sequences, etc.)
over robot poses with the goal of designing simple closed-
loop behaviors. Since robots are being increasingly popular
in family entertainment, such tools will be undoubtedly
important for the non-professional users.

This paper described the Kouretes Motion Editor (KME),
an interactive software tool for designing complex robot mo-
tion patterns, freely available through www.kouretes.gr.
While KME aims mostly for assisting RoboCup practicioners
and robot educators, it can also be extremely useful in re-
search efforts by simplying testing procedures and providing
initial hand-crafted motions for various robot learning tasks.
We believe that the development of such tools can also bridge
the gap between humans and robots, as they abstract from
the technical details, moving attention to the task at hand.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the
administration of the Technical University of Crete to team
Kouretes. This work was partially supported by the Marie
Curie International Reintegration Grant MCIRG-CT-2006-
044980 awarded to Michail G. Lagoudakis within the 6th
European Framework Programme.

REFERENCES

[1] D. Gouaillier and P. Blazevic, “A mechatronic platform, the Aldebaran
robotics humanoid robot,” 32nd IEEE Annual Conference on Industrial
Electronics, IECON 2006, pp. 4049-4053, November 2006.

[2] O. Michel, “Webots: Professional mobile robot simulation,” Journal of
Advanced Robotics Systems, vol. 1, no. 1, pp. 39-42, 2004.

[3] B. Spitzak, M. Sweet, C. P. Earls, and M. Melcher, The Fast Light
Toolkit v. 1.3 Programming Manual. [Online]. Available: www.fltk.org

[4] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, , and H. Mat-
subara, “Robocup: A challenge problem for Al” Al Magazine, vol. 18,
no. 1, pp. 73-85, 1997.

[S] SPL Technical Committee, “RoboCup SPL (Nao) rule book,” 2008.

[6] Aldebaran Robotics, Choregraphe. [Online]. Available: www.
aldebaran-robotics.com/eng/choregraphe.php

[7]1 Sony Corporation, MEdit for ERS-7 1.0.7, OPEN-R SDK, 2003.

[8] Skitter v3.40. [Online]. Available: www.dogsbodynet.com/skitter.html

[9] Microsoft Hellhounds, Team Report 2006, Dortmund University, 2006.

